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$ Department of Theoretical Physics, Schuster Laboratory, The University of Manchester,. 
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Received 31 March 1980 

Abstract. We 'halve' an Einstein universe in two ways. For the spin-0 field we equatorially 
bound S 3  by S2, while for the spin-f field we factor S 3  togive the lens space S 3 / Z 2 .  In both 
cases the vacuum expectation value of the stress tensor is identical to that in the complete 
Einstein universe. 

1. Introduction 

Ford (1975) was the first to consider the Casimir effect in an Einstein universe (see also 
Ford 1976, Dowker and Critchley 1976a, 1977, Dowker and Al'taie 1978), the 
particular attractiveness of this manifold arising from the exact nature of the WKB 
approximation on S 3  (Dowker 1971). His results for the renormalised vacuum expec- 
tation value of the stress tensor are 

(foe) = (480.rrZu4)-' 
(ej) = - ( 1 4 4 0 ~  2 U 4 ) -1 gij 

for the conformally coupled spin-0 field, and 

(foe) = 17(1920.rrzu4)-' 
( f i j )=-17(5760~ 2 U 4 ) -1 gij 

(1.la) 

( l . l b )  

(1.2R) 

(1.2b) 

for the neutrino field, where a is the radius of S 3  and we employ a metric g,, of negative 
signature. These equations express the physical content of the vacuum state's depen- 
dence on the topology of the manifold. 

In this article we consider the effect on (f,,) of two perverse alterations of the 
manifold structure: we constrain the spin-0 field to satisfy Dirichlet or Neumann 
boundary conditions on the submanifold Sz which bounds S 3  equatorially, while for the 
spin-; field we factor the spatial section to give the lens space S3/Z2. In both instances 
we obtain precisely the results above for the complete Einstein universe. (Actually, 
since we take the massless limit of the massive spin-; results, we obtain twice the 
neutrino values above.) 
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2. Spin-0 field 

This field satisfies 

(0 - R / 6 ) 4 ( ~ )  = 0 

in M = R 0 S3 subject to one of the boundary conditions 

Dirichlet : 4(x)  = 0 

Neumann: nOLV,4(x) = 0 (2.2b) 

on aM = R 0 S2 where S2 bounds S3 equatorially and n,  is the unit inward pointing 
normal form on aM (Hawking and Ellis 1973). The corresponding Green function 
G(x, x ' )  satisfies 

(O-R/G)G(x, x ' ) = S ( X ,  x ' ) ,  (2.3) 
where S ( x ,  x ' )  is the covariant delta function (Dowker and Critchley 1976b), and one of 

Dirichlet: G(x, x ' )  = 0 

Neumann: naV,G(x, x ' )  = 0 

( 2 . 4 ~ )  

(2.4b) 

when x E aM. 
Reflecting { x }  in aM to give {J} we obtain the double manifold D =MU aM U M * ,  

the complete Einstein universe, on which the Green function is expressible as the image 
sum (Dowker and Critchley 1976a) 

-i a, 
n=-m4r s ina  U, 

m 
- D(x,x ' )=  c 2 2 (2.5) 

where a, = a + 2 r n ,  aa is the geodesic distance on S 3  between x and x' and a: = 
( x  - x ) - a a ,, - ie. We can therefore satisfy (2.4) by locating an image charge at 2' in 
the dual M* region (McKean and Singer 1967) giving 

(2.6) 

0 0 1 2  2 2 

G(x, x ' )  = D(x, x ' )  r D ( x ,  2') 

where the upper (lower) sign indicates Dirichlet (Neumann) boundary conditions. 
Expressing ( f,,,) as the coincidence limit (DeWitt 1975) 

(fFV> = (-i/6) lim [~v ,v , ,+  gwV,(VpVp +vp'vp'-gAu"'Avuf) -g,p,Vp'V,, 
X"X 

-g,,,VUV, +~(R,'gu,~+RP'.~g,,~-Rg,,~)]G(x, x ' )  

= [ fwuG] (2.7) 
we see that F [ f , J l ( x ,  x"')] gives the finite correction to the formally divergent 
expression [ f w J l ( x ,  x')] for the complete Einstein universe. The calculation and 
regularisation of the latter quantity is performed in Dowker and Critchley (1976a) and 
yields equations (1.1). 

To show that the correction F [ f , J l ( x ,  x"')] vanishes, it is convenient to separate off 
the n = 0 term in (2.5) yielding 

[ ~ @ : C L Y D ( X ,  2 ' ) 1 = ~ f w ; . ~ n = o ( x ,  2')1+[fw~ln+o(n, J')I* (2.8) 

The first term on the RHS gives the correction to (1.1) due to the presence of aM if M 
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were in fact locally R 0 S 3  but had no global topological features. The second term 
expresses the fact that multiple scattering can occur by crossing the hemi-hypersphere. 

Introducing hyperspherical polars (el, 02, 4 )  (Erdelyi et al 1953) such that el = 7r/2 
identifies aM, we easily obtain 

[ fooDn=o(x, 2’11 = ( 2 4 ~  a ) cosec 2e1[(7r - 2e1)-’ sec’ dl 

( 2 . 9 ~ )  

[ f i jDn=o(x,  2’)l = (247r2a4)-’ cosec 2e1{[(tr - 2eJ1 cosec’ el -2(n-2e1)-’ cot B1binj 

+ [ 2 ( ~  - 2e1)-’ cot 2e1 cosec 2e1 - 2 ( ~  - 2e1)-’ cosec 2e1 

2 4 -1 

+ 2(7r - 2e1)-’ tan el -S(T - 2el)-3] 

+ 4 ( ~  - 2e1)-3]hi,} (2.9b) 

where h,, = g,, + n,n, is the metric on aM (Hawking and Ellis 1973). As expected, we 
thus find a el dependence in (fFV). Using the summation (Gradshteyn and Ryzhik 
1965) 

(2.10) 

the second term on the RHS of (2.8) may be cast in closed form. Surprisingly we find 

[ f , ; L D n + O ( X ,  ?’)I = - [ f , $ n = O ( X ,  2’>1 (2.11) 

and so 

The topological aspects of the manifold, in the form of multiple scattering, exactly 
cancel the local dependence, leaving only the vacuum stress (1.1) for the complete 
Einstein universe. 

3. Spin-4 field in lens spaces 

Spin-; stress expectation values may also be expressed as the point coincidence limit of 
operators acting upon the Feynman Green function for the spacetime as expounded by 
Dowker and Al’taie (1978) in their Einstein universe calculation. This method admits a 
rather straightforward modification in order to perform the analagous R 0 S 3 / Z ,  lens 
space calculations, r being a positive integer. Their ‘renormalisation’ procedure of 
dropping the ‘direct’ term in the image constructed Einstein universe massive Green 
function yields results which agree in the massless limit with Ford’s (1976) neutrino 
calculations involving a field mode summation. However, when starting explicitly with 
the two-component theory neutrino Green function, the same renormalisation pro- 
cedure leads to a distinct set of results, and this fact we use as one justification for 
considering the massive spin-; field in lens spaces. 

In order to derive an expression for the second order, ‘squared’ spin-4 Green 
function in R 0 S3/Zr,  we note the following points. 

(i) The space S 3  is invariant under left and right SU(2) transformations, that is, its 
symmetry group is SU(2IL 0 su(2)R. 

(ii) The lens space S3/Zr  may be expressed as S 3 / ( r ~  0 r R )  where rL= 1, the 
identity element, and rR is the group which generates the factor space by point 
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identifications in S3 .  We might just as well have reversed the roles of rL and r R  but we 
adhere to this choice for our calculations. 

(iii) Provided the local vierbein with respect to which the spinor field is constructed 
remains invariant under the action of all the yR(€rR), the lens space second order 
Green function may be written down by identifying points in the covering space, that is 

S(x, x ’ )  = c Ss3(x, x ’ y d  (3.1) 
YR 

where Ss3 is the Green function in R 0 S3. 
The Killing vectors of the left SU(2) group are invariant under all right trans- 

formations, and in particular, those belonging to r R ,  hence they present an obvious 
choice as local dreibeine for which (3.1) is valid. The fourth bein points in the time 
direction and the resulting spinors we call ‘left spinors’. It remains for us to find the 
explicit form of the point identifications incorporated in (3.1) and to do this, we embed 
S 3  in four-dimensional Euclidean space which is identified with C 0 C such that S 3  is 
the set of ordered pairs ([], 12) satisfying 

1 & 1 2  + I52l2 = a2. (3.2) 

S3/Z,  is now generated by the identifications (our lens space being classified by Seifert 
and Threlfall (1934) as Linsenraume (r, 1)) 

( t 1 , 5 2 )  + (tl exp (27wr),  t 2  exp (2.nilr)) (3.3) 

or, if parametrised in terms of the Euler angles 4, 8 and w and choosing the pairs such 
that 

51 = a exp [(i/2)(4 + 011 cos ( e m ,  52  = a exp [(i/2)(4 -0)l sin (8/2), (3.4) 

(3.5) 

(3.3) may be expressed as 

~ 8 ,  0 )  -* (4  + 4 ~ / r ,  8, 0) .  

At this point, we reproduce Dowker and Al’taie’s (1978) expression for the left 
spinor second order Feynman Green function in R 0 S3: 

where gi  are the Pauli matrices, H‘,*’ is a Hankel function and Ss3 satisfies 

- ( i y T ,  -m)(iy”V, +m)Ss30Ss3(x, x ’ )  = 1S(x, x ’ )  (3.7) 

with the aforementioned choice in vierbein. To invoke (3.1) in the construction of 
S(x, x ’ )  we take x to be the origin (4  = 8 = w = 0) and x’ to be described by ($‘, e’, 0’). 

r R  = { y n }  where n runs from 0 to r - 1 and y generates the transformation (3.5). The 
radial separation of x and x ‘ y “ ,  ax,,, in terms of the Euler angles is given by 

e’ y’-y+%) 
cos X,, = cos - cos - 

2 r 

and making the choice 8’ = 0, we obtain 

xn = x o  + 21rn/r. (3.9) 
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Ss3(x, x') depends upon the radial separation of x and x', hence (3.1) now implies that 
the right-hand side of (3 .6)  with the replacement an +,yn gives S(x, x'). In terms of this 
2 x 2 Green function, the field energy density and stress tensor trace expectation values 
may be written as 

(foe) = -2i lim Tr r30r30S(x, x') 

( f w " )  = 2im2 lim Tr S(x, x'). 

x ' - x  

and 

* ) + x  

( 3 .  loa)  

(3.106)  

The lens spaces being considered are homogeneous and therefore our choice in the 
locations of x and x' is not at the expense of positional generality in the expectation 
values. The remaining calculations are straightforward and we obtain expressions for 
the expectation values which, like S, are sums over n. Eventually we shall choose r = 2 
but meanwhile, we merely assume r to be even and split the sums into terms for which 
n = kr, n = (2k  + l ) r / 2 ,  where k runs over all integers, and the remaining terms, these 
being terms for which n # kr/2.  The first sum, over n = kr, gives the S 3  expressions and 
'renormalisation' consists of dropping the k = 0 term, this being the only source of 
divergence in the lens space values. The contribution from the n = (2k + l ) r / 2  terms 
turns out to be zero and the remaining terms, that is, those for which n # kr/2,  give the 
lens space correction to the Einstein universe expectation values ( f w , , ) s 3  of Dowker and 
Al'taie (1978).  We find 

ntr 
r mr f [ 2ma cosec - K2(2trmanr-') (foe) = ( f o o ) s 3  + 7 4tr a ,,=I 

n #  kr j2  

1 ntr 
r -sec - K1(2trmanr-') 

and 

(3.1 l a )  

ntr (fJ = ( f w @ ) S 3  + 22 m 2  2 [sec 7 Ko(2trmanr-') 2tr a n = l  
n #  kr j2  

(3.1 1 b )  

For odd r, (3.1 1 )  still holds if we replace n # kr/2 by n # kr. Putting r = 2 we see that no 
terms in the correctional summations survive and that the expectation values are 
identical to those in S3 .  What is more, the global group of isometries of S3/Z2 ,  like that 
of S3, is spin (4) and hence ( f w U k r = 2  has the same tensor structure as ( fwu)s2 ,  that is 
( f i '?,=2 = 0 and ( ~ ) r = 2 = ; g i j ( ( T w I L ) r = 2 - ( f ~ 0 ) r = 2 ) .  We have therefore ( T w u ) r = 2  = 

We might also mention that an alternative method of obtaining these resultsjs to use 
homogeneity to determine (foe) from the mode eigenvalues and then find (Ti) fr2m 
symmetry and a knowledge of the trace (ei) (which follows from a variation of (Too) 
with respect to the radius, see Dowker and Critchley 1977). This method avoids point 
splitting and a knowledge of the Green function. 

Here, we briefly remark upon the existence of twisted spinor connections on the lens 
spaces for which r is even. Spin connections, like real scalar fields, in these spaces are 
labelled by the cohomology group H'(S3/Z,,  Z2)  and just as twisted real scalar fields 
exist for even r (Dowker and Banach 1978), so do twisted spin connections. The twist 

ntr 
r - 2ma cosec - K1(2trmanr-*) 

< f w u ) s 3 .  
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may be transferred from the connections onto the spinor field itself (Chockalingham 
and Isham 1980) ind  this introduces a factor of (-1)" on the left of the brackets { } in 
(3.6) after the an +xn replacement, to give the twisted spinor Green function. This 
factor of (-1)" carries through into the summations of (3.11) and leaves the S3/& 
results indistinguishable from the untwisted spinor case. 

4. Discussion 

In connection with the spin-0 case considered, it is perhaps worthwhile tc draw 
attention to certain similarities to a better known situation. This is the case of a 
conformally invariant spin-0 field in the presence of a single plane boundary in 
Minkowski space where, also, the field stress expectation values are identical to those 
for the complete manifold, in this case zero. In both situations the scalar field is 
conformally invariant and Sz bounding S3 equatorially, in common with a plane 
boundary in Minkowski space, has vanishing extrinsic curvature. (Compare with 
Deutsch and Candelas' 1979 work on curved boundaries.) 

Halving the Einstein universe to obtain the lens space S 3 / &  is a quite distinct 
procedure resulting in a multiply connected space doubly covered by S 3  and at the time 
of writing, the physical connection between the two situations considered in this article 
is not apparent to the authors. A further point to note is that although the spin-; stress 
expectation values are insensitive to this factoring of S3 ,  the same is not true of the 
conformally invariant spin-0 field (Dowker and Banach 1978). 
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